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ABSTRACT

A new approximate collision operator which is more general than the model operator

derived by HIRSHMAN and SIGMAR is presented. By use of this collision operator, the

ion thermal conductivity and the ion distribution function in the banana regime are calculated

for an axisymmetric toroidal plasma of arbitrary aspect ratio. In the limits of large and small

aspect ratios , the computed thermal conductivity agrees with the results of ROSENBLUTH

et al. and HAZELTINE et al. The simple expression for this conductivity is also derived.
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The neoclassical transport coefficients in the low collision frequency regime have been

investigated by many authors (HINTON and HAZELTINE,1976, IRSHMAN and SIG-

MAR,1981). Using the large aspect ratio expansion, ROSENBLUTH et al.(1972) obtained

the transport coefficients from a variational principle. The aspect ratios for the present and

the planned future thermonuclear reactors are not so large that the finite aspect ratio correc-

tion is important. Recently, BOLTON and WARE (1983) calculated the ion thermal conduc-

tivity without assuming the large aspect ratio. They solved the drift kinetic equation numeri-

cally by using the model collision operator derived by HIRSHMAN and SIGMAR (1976).

The finite aspect ratio correction is shown to increase the ion thermal conductivity by a factor

of two in the intermidiate aspect ratio case. In this paper, wc introduce a new approximate

collision operator. Using this collision operator, we calculate the ion thermal conductivity

and the ion distribution function in the banana regime for an axisymmetric toroidal plasma of

arbitrary aspect ratio.

Let us introduce the flux coordinates (*,?,X) where * is the poloidal flux, the toroidal

angle,and X the poloidal angle-like variable. We consider a plasma composed of electrons

and a single kind of ions in an axisymmetric magnetic field

B = !VJ+ VTXVt,, (1)

where I is a function of J only. The mass and the charge of an electron are denoted by in,

and -e, and those of an ion by n, and ej.

The basic equation to describe the neoclassical transport is a drift kinetic equation for a

guiding-center distribution function. In many situation of practical interest, the guiding-

center distribution function f4 for ions is slightly perturbed from the local Maxwellian distri-

bution function fo. We assume that the perturbation fi due to the ion-temperature gradient

from f,0 is the first order quantity in a parameter 8= pi/L, where p,, is the poloidal Larmor

radius of an ion and I. is the plasma scale length. Then, the distribution function fil satisfies

the linearized drift kinetic equation

B - C,1 f)= -Vji.V *(x2 - 5 2 )Tfo, (2)
Vt B 8X ,
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where we have chosen the energy, the magnetic moment p. = 2/2B and a=v,,ljv,,j as indepen-

dent variables instead of the velocity. Here, %=v.B/IB[,x=vlv,v= =,Tfd/ ,T

the temperature of ions, Vf,-V* - (Imc/e,)Yj .V(v/B) the radial component of drift velocity

and Cthe linearized Fokker-Planck operator for collisions between ions. We have neglected

collisions with electrons in the above equation (2) since the mass ratio m,/mj is very small.

In the banana regime, we expand the distribution function as f, ,=ffv)+ --+ . ,

where v. f=4irnjelnA/mv is the ion-ion collision frequency. Then, the function f1) and ,1)

satisfy the equations

-ta°  _v,,.vqs(x 2 
- ,

v 5/2).T/ o, (3)
Bx 8X T,
a, L) _ Cu(1 0)) -. (4)

B 8X(4

The solution to the eq.(3) is given by

fAM 2L±L [% E(x2 - 5/2)fo + o(xk,,) T_ (5)

where q-v i/v,X-(1-q 2 )1B. The function G is obtained from the following solvability condi-

tion for the eq.(4):

f _-d -LC,(X(-2_ o + G) - 0. (6)v. B. B

Here the integration means

d X dX  for X<X,

where X,-11B.., and Xi(X) and X2(X) are bounce points of trapped particle. As is well

known (ROSENBLUTH et al.,1972), the function G becomes identically zero in the trapped

particle region.

The heat flux across a magnetic surface is given by

<- d mcV1T <L fdvA2 ( -1 .')V )C.)> . 8o2 2
,,,-<,T f dv- Y " ). '> (X2

B 2(8

.. .. .. ..
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Here, <A> denotes the average over the magnetic surface and is expressed as

<A> - f dx(A/B,)/fo dX/BX. (9)

Let us introduce an approximate collision operator. The Legendre polynomial P((q) is

the eigenfunction of the collision operator C, (ROSENBLUTH et al.,1957),i.e.,

C,,(T(x)P,(q)) = P,(q)Cu,(T(x)). (0)

The collision operator Cf is well approximated for 12>> 1 by the pitch-angle scattering

term,i.e.,

CI, -a - -!I('+ ')V,,(X). ]1

where v,(x) - (vj/2.)[(2x2- 1)erf (x)+ (2/Va)xe . ] We use this approximation for 123.

Then, the collision operator is written as

CCf) = vI(x)..(f) + 7 P,(q)(C, + ,,,(x)f, (12)
4-02

Here,

21+1 dqP,(q)f

and

a (14)

This approximate collision operator preserves the properties of the particle number, the

momentum and the energy conservations. Our collision operator (12) is more general than

that of Hirshman and Sigmar which can be derived by approximating Ct(1=0,1,2)in (12) by

more simple forms.

Let us define the function K(x) by

K(x) = -!<B2 '>f dXG(x,X,a ) (5)

Using the eq.(6) and the approximate collision operator (12), we can express the function G

in terms of K(x) as

G= 10'.-' Af dX
Gm iO7 I - _A8 >

2
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x I [CI,(x(x2-S12)fo) + (Cil + v,,(x))K(x)], (16)

where 8(k, - X) is the Heaviside function. The function K(x) satisfies the equation

v,,(x)K(x) - f,(Cil + v,,x))K(x) = fcCi(x(x2- 5/2)f/o), (17)

where

f, =<B2>Jf dX (18)
4 o <-VI -XB> "

This equation is derived from (15) and (16). Using the expression (16), we obtain

f(m) mIcIv T .1xq(X2 5 lXB K(x)l (19)

go, Ti [IB2 
2f x <\1I--B

The heat flux Q, is also written in terms of K(x) as

Q ( -,micvil 2 \/2 .;j (0

= '(ei<B'> ) TI (0

L,= -<L><B2> dx3(.2 - 5,/ 2)E,,(x(x2 - 5/2)e-l)B2

+ <B> dxx3(512 - x2)C1 (k(x)e- ), (21)
<B2 > ,

where k(x) = K(x)if', C1 = C1 /v,, and \ =3V",/4viI

We calculate the function K(x) by means of the Chapman-Enskog method. Let us expand

N-i 
t

the function K(x) as K(x) =x 7 ajSjA(x2)fo ,where S?/'is the Sonine polynomial of order 3/2.
j-0

By substituting this expansion into (17), we obtain the following equation for a,:

-' [(1 - f,)<jlV(x)k> - f]<jICj~Ik> = - f,<jlC),l1>, j=0,1,2,...N- 1(22)

k-0

where V,, (x)- v, (x)/v,, . Here

<j IC Li' f " dxx3SS (x2) C(xSJ (x2)e -2), (23)

where C=C, or 11.(x). The matrix elements <jJCj'> are calculated by using the generating

functions (KANEKO,1960, TAGUCHI,1982,1983).

In the limits of unit aspect ratio and large aspect ratio, the ion thermal conductivity can be

obtained analytically. The thcrmal conductivity for the unit aspect ratio ( f, =0 ) becomes

L,=<B>2<1/B2>/V\ since K(x)=0. This result agrees with the one of ItA7-.rTINF et
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al.(1973). The function k(x) for the uniform magnetic field (f, = 1) is given by

k(X) [x(< - X2) - <0[Ui(),> ]. (24)2~) < x' 0 u x)0>

By means of the relation

f0 'dxe-2x3(5/2 - x2)E,(i) = <1111>

+(1 -f, )/ffo dxe -"2x3(5/2 - x2)F,, (x)k, (25)

we can obtain the thermal conductivity in the large aspect ratio

<B > 2  1 1 (f >2t(-~a
Li < I'. > I + (1 f)<B>' C, 1 - ¢  (26)

N/ = B 2  <B2>) <B2>

a ='X)O + < l1JV x)J> = 0.326. (27)

This agrees with the result of ROSENBLUTH et al.(1972).

Next, we derive the simple expression for the ion thermal conductivity. The lowest

approximation for K(x) is given by N=2. Then,the approximate -thermal conductivity

becomes

LKP) - <> -2 < I > - I +  1 I > 1-f4 (28)V<B2> 7 <B2> 1 + Pfe

= -1 + i = 1.17. (29)

As will be shown later, this is in very close agreement with the more rigorous one obtained

by N=50. Note that the approximate thermal conductivity LaJP) for the limits of unit aspect

ratio and large aspect ratio agrees with the exact one L,.

Finally, we practically calculate the thermal conductivity L, and the ion distribution func-

tion 0) in a typical magnetic field of tokamak with circular cross section , i.e.

B = (B,,Bj,B,) = (0,By,.h,Bolh), (30)

h = 1 + ecosO, f=rR. (31)

Here r and 0 are the polar coordinates in a plane perpendicular to the magnetic axis and R is

the major radius. For this magnetic field, f, is computed numerically and is shown in Fig.l.

The dashed curve represents the analytic expression f = 1- 1.035\/' for small e. In Fig.2,

we depict the thermal conductivities L,= V2L,IVf and Ed \52I2 P/\ as a function of e.

Jd
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From this figure, the approximate thermal conductivity LOP is shown to agree well with the

more rigorous one f., CHANG and HINTON (1982) derived the following approximate

expression,

Li = (0.66 + 1.88V7'- 1.54,)<B>2<l/B2> (32)

This expression was obtained by using the BOLTON and WARE's result for e =0.3, and the

results of ROSENBLUTH et al. for the large aspect ratio and of HAZELTINE et al. for

the unit aspect ratio. For comparision, we also plot the values of this expression in Fig.2 by

dashed curve. The ion distribution function Po) is easily computed from (19). In Figs.3(a)-

(d), we shows the contours of fO)/f, 0 for 9 =0, and (a) E =0.1, (b) f =0.3, (c) E =0.5. The

contour levels are evenly spaced. The dashed lines represent the boundaries between the

trapped and the untrapped region. In Fig.4, the distribution functions

j'°)=JfO)/fj0 (-miclvT;/eiTj)- 1 are plotted as a function of v,/v1 for 0 =0, v =0, and E

=0,0.1,0.3 and 0.5.

In conclusion, we have presented the new approximate collision operator. Using this

operator, we have formulated the method for calculating the ion thermal conductivity and the

ion distribution function in the banana regime. Our method can be used for the axisymmetric

toroidal plasma of arbitrary aspect ratio.
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FIGURE CAPTIONS

Fig.1 Values of f, as a function of F.

Fig.2 The ion thermal conductivities L, and IP as a function of e. The dashed curve

shows the expression (32) obtained by CHANG and HINTON.

Fig.3 The contours of j O)/f~o for 0 =0 and the inverse aspect ratios (a) F =0.1, (b) f

=0.3, (c) e =0.5. The contour levels are evenly spaced. The dashed lines represent

the boundaries between the trapped and the untrapped region.

Fig.4 The ion distribution functions ?,o) are plotted as a function of v, for 6 =0, v =0,

and e = 0,0.1,0.3 and j.5.
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